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ABSTRACT
Neurodegenerative disease is a progressive loss of neurons from central nervous 
system and has a huge impact on health care system. Various causes have been 
proposed of which inflammation has been suggested to be a probable key factor 
in the most of such conditions. The involvement of immune cells including 
lymphocytes in such diseased condition of the CNS supports this notion. The 
effective therapy for these diseases has been sought for more than a half century 
but still lacking such therapy. On such basis this review article has mainly focussed 
on evidence of the involvement of immune cells in various neurodegenerative 
diseases including Alzheimer’s disease, Parkinson’s diseases and Multiple sclerosis 
and suggests a possible therapy of such diseased conditions of the CNS by the 
modulation of immune system.
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INTRODUCTION
The global burden of neurodegenerative diseases is huge 
and accounts for at least 15% of the global burden of 
diseases.1 Although cases of neurodegenerative disease are 
increasing every year, reliable therapeutics are still being 
sought and a complete understanding of the underlying 
biology is lacking.

Neurodegenerative disease is a progressive loss of neurons 
from the CNS, associated with a deficit in the function of 
the affected region. Cell death during neurodegeneration 
can be either via apoptosis or necrosis or both.2,3 Various 
conditions have been suggested for the neurodegeneration 
of the CNS including ageing, inflammation, stress and 
trauma and genetic predisposition.4-11 Recent studies 
have shown a strong link between inflammation and 
neurodegeneration but the exact role for inflammation 

in neurodegeneration is still elusive.2,7,12 It is not clear 
whether inflammation causes neuronal death in 
neurodegenerative diseases or whether the inflammatory 
infiltrate is simply a manifestation of the disease process. 
However, several possibilities have been proposed for 
the link between inflammation and neurodegeneration: 
1) inflammation induces neurodegeneration, 2) 
neurodegeneration causes inflammation, 3) other factors 
cause either inflammation or neurodegeneration or both, 
4) inflammation and neurodegeneration occur as a cycle 
which amplifies each others response and 5) inflammation 
can be neuroprotective in neurodegeneration.13 The key 
features of CNS inflammation are glial cell activation, local 
production of inflammatory mediators, expression of 
MHC and adhesion molecules, release of free-radicals and 
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recruitment of immune cells.7

During neurodegenerative diseases, either peripheral 
immune cells, such as T cells, initiate inflammation 
in the CNS or CNS resident immune competent cells 
such as microglia as well as neurons, astrocytes and 
oligodendrocytes, release inflammatory mediators 
to recruit more peripheral immune cells including 
lymphocytes leading to CNS inflammation.7,14-17 Most 
commonly, inflammation starts within subarachnoid space 
which disseminates to other regions of the brain.16-18 
During inflammation of the CNS, endothelial cells of the 
BBB express various selectins and adhesion molecules that 
increase the migration of lymphocytes from the systemic 
circulation to the perivascular spaces of the brain.19-21 
Further, activated lymphocytes also express various 
receptors including chemokines receptors, integrins 
and selectins that help to interact with their respective 
ligands expressed on the surface of endothelial cells 
during neuroinflammation.22-25 Activated lymphocytes and 
cells of the CNS including microglia, astrocytes, neurons 
and oligodendrocytes release various pro-inflammatory 
cytokines such as IL-1, TNF-α, IL-23, INF-γ and chemokines 
including various neurotrophic factors which can 
contribute in the outcome of the CNS inflammation.15,26 
There are several neurodegenerative diseases including 
AD, MS, PD and stroke in which lymphocytes are actively 
involved and believed to be a key player in the initiation of 
CNS inflammation. Some examples of the most common 
neurodegenerative diseases are briefly explained in 
subsequent headings.

Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disease that mostly affects patients in their later stage 
of life.27 Typical symptoms of AD are loss of cognitive 
functions including emotion, learning and memory 
processing skills leading to dementia.28,29 The pathological 
impression of AD can be characterised by the deposition of 
amyloid-beta (Aβ) protein plaques in the brain parenchyma 
and accumulation of tau proteins within neurons.30 These 
protein plaques are thought to interfere with synaptic 
transmission and neuron-neuron communication leading 
to neuronal death.28,31,32 Further, high levels of tau proteins 
within neurons form tangles and block transportation of 
nutrients or other vital cellular factors throughout the cell 
which has been suggested to be one of the reasons for cell 
death in AD.31,33,34

In AD, amyloid-beta plaques and tau proteins are considered 
to be crucial in the pathology. Recently, inflammation has 
been proposed to be one of the key players in AD.35-37 The 
inflammatory responses in AD can be characterised by the 
up-regulation of cytokines and chemokines along with 
activation of microglia.35 The activated microglia clusters 
can be seen near amyloid-beta deposition site and these 
cells also express high levels of MHC-II, cytokines and 
chemokines contributing to disease progression.35,38-41 

However, these microglial cells also involve in clearing 
of amyloid-beta and this function has been shown to be 
enhanced in the presence of TGF-β.37,42 In addition, reactive 
astrocytes are also clustered at the site of amyloid-beta 
deposition but high levels of these cells also accumulate 
at neuritic plaques.43 These reactive astrocytes are 
capable of expressing various cytokines, growth factors, 
adhesion molecules and prostaglandins.44-48 Furthermore, 
astrocytes are suggested to be involved in inhibition of 
microglial ability to clear amyloid beta.49 The analysis of 
brain autopsy has also revealed that there is a significant 
increase in inflammatory markers as well as increase in 
complement activation and lysis of neurites in AD subjects 
when compared to non-demented subjects, which strongly 
suggests that inflammation has a role in AD.50,51 With 
these findings, it can be suggested that this inflammatory 
responses might contribute in recruiting lymphocytes from 
the systemic circulation into the brain.  Further, T cells have 
been detected in the brain of AD patients.52 Recent studies 
have also demonstrated the up-regulation of T cells in the 
CNS of AD when compared to healthy controls.53,54 These 
studies have revealed an increased activity of various 
subsets of T cells such as Th-17 and Th-9 in AD and cytokines 
including IL-9, IL-21 and IL-23 released from these T cells 
are also increased in AD which have been suggested to be 
one of the factors in AD-associated neuroinflammation.53 
The beneficial effect of T cells has been demonstrated in AD 
however, these T cells lose their protective effect in severe 
condition of AD.54 With these findings, it is evident that 
lymphocytes are present in the brain of AD and may have 
an important role in AD. However, the role of lymphocytes 
in AD is still poorly understood and a better understanding 
of this phenomenon could help in search of novel drug 
targets.

Multiple sclerosis

Multiple sclerosis (MS) is a chronic neuroinflammatory 
disease of the CNS characterised by demyelination, axonal 
damage and autoimmunity affecting people mostly between 
of 20 and 40.55-58 It affects both white and gray matter of 
the CNS and scattered focal demyelinated lesions can be 
seen throughout the white matter of the CNS.55,59 There is 
an episodic exacerbation followed by remission during the 
course of the disease and this relapsing-remitting course is 
suggested to be immune-mediated which is characterised 
by activation of microglia and infiltration of peripheral 
immune cells into the CNS.57,60 This disease process leads to 
secondary MS having marked degeneration of neurons and 
axons along with massive cortical demyelination.55, 57, 61, 62

Genetic predisposition, environmental factors and viral/
microbial infections have been proposed as risk factors in 
MS but how these factors contribute to the aetiology of the 
disease is still under investigation.63-67 However, it is now 
well accepted that MS is a T cell mediated autoimmune 
disease.13,56,60,68 The concept of MS as an autoimmune 
disease arises due to its similarities in clinical symptoms 
with EAE, an animal model for this disease.69 EAE is 
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induced in the animal by immunising with myelin-derived 
protein such as myelin-basic protein, proteolipid protein 
or myelin oligodendrocyte glycoprotein and the disease 
is mainly initiated by myelin-specific autoreactive T cells. 
Autoreactive T cells have been identified in MS patients, as 
well as being present in healthy people.70 However, these T 
cells are more activated and have a memory phenotype in 
MS when compared to healthy subjects.62,71 These activated 
T cells express various chemokines, cytokines and adhesion 
molecules which help them to interact with the BBB and 
migrate into the CNS to initiate immune response against 
myelin-derived proteins. Although, CD4+ T cells are thought 
to be initiators of EAE, analysis of MS lesioned brain tissues 
has shown predominance of CD8+ T cells.72 CD4+ T cells can 
be either neuroprotective or pathogenic depending on the 
types of cytokines or neurotrophic factors they release.13 As 
described above, different subsets of CD4+ T cells release 
their functional cytokines: Th1 cells release inflammatory 
mediators including IFN-γ and TNF-α whereas Th-2 cells 
release anti-inflammatory mediators like IL-4.73 IFN-γ and 
TNF-α have shown a contrast in response in EAE and MS 
since IFN-γ exhibits neuroprotection in rodent models of 
EAE whereas it exacerbates the disease in MS.13,74 Similarly, 
blocking TNF-α function in EAE is neuroprotective but not 
in MS.75 This finding therefore suggests that caution should 
be taken while comparing data from the EAE model with 
MS. The major concept of immunopathogenesis of MS has 
been connected to the balance between Th-1 and Th-2 
functions. However, there are other subsets of CD4+ T cells 
such as Th-17 and Treg cells along with CD8+ T cells cannot 
be excluded. Th-17 cells have been found to express more 
activation markers, co-stimulatory and adhesion molecules 
than Th-1 cells suggesting they are more pathogenic. 
Further, the pathogenic T cells suppressor capacity of Treg 
cells is found to be attenuated in MS.76,77 Moreover, CD8+ 
T cells have been directly linked to the demyelination of 
axons in MS and are pathogenic in the immune-mediated 
demyelination of axons.75,78 Nevertheless, there is no exact 
mechanism how these cells are contributing to the disease 
process or neuroprotection in MS and further research is 
required to understand MS pathology.

Parkinson’s disease

Parkinson’s disease (PD) is an age-related chronic 
neurodegenerative disease clinically characterised by 
tremor, rigidity, bradykinesia, postural instability, dementia 
and autonomic dysfunction while pathologically by loss 
of dopaminergic neurons in the substantia niagra and 
the presence of Lewy’s bodies which are aggregated 
proteins such as α-synuclein.32,79-81 The accumulation and 
misfolding of α-synuclein induce toxicity leading to the 
loss of dopaminergic neurons.82 This results in a reduction 
of dopamine production causing gait and movement 
impairment because dopamine is required for a normal 
motor function of the brain.79 Further, proteosomal 
and lysosomal system dysfunction and reduction in 
mitochondrial activity due to genetic mutations are also 

proposed to be causative factors in neuronal death during 
PD.82 Various risk factors including environmental genetics 
and age have been related to pathogenesis of PD.4,80,83,85 
Furthermore, there are several studies suggesting the 
relation between inflammation and pathology of PD.86,88 
However, it is still not clear whether inflammation 
observed in PD can be considered as classical inflammation 
or not.86 Therefore, the term ‘neuroinflammation’ has been 
coined in the pathology of PD. The upregulation of MHC 
expression is one of the first signs of neuroinflammation 
in PD with an increase in MHC-II expressed microglia in 
the substantia niagra.86,89 Similar upregulation of MHC 
molecules has been reported in 1-methyl-4-phenyl-1,2,3,6-
tetrahydropuridine (MPTP)-intoxicated animals, an animal 
model for PD and is also associated with the infiltration of 
lymphocytes in substantia niagra.90 The other hallmarks for 
neuroinflammation are the presence of reactive astrocytes, 
activated microglia, increase in cytokines, chemokines, 
prostaglandins, and reactive oxygen and nitrogen species.91 
Microglial activation has been related to accumulation of 
α-synuclein protein and proteosomal and lysosomal system 
dysfunction and these activated microglial cells have been 
reported to induce cell death in dopaminergic neurons.88,92 
Furthermore, neurons over-expressing α-synuclein 
protein have demonstrated early activation of microglia 
and release of various inflammatory mediators such as 
IL-1, IL-6 and TNF-α and inflammation-related enzymes 
including cylcoxygenase-2 (COX-2) and inducible nitric 
oxide synthase.93-96 In addition, pro-inflammatory factors 
including IL-1, TNF-α, reactive oxygen/nitric oxide species 
and prostaglandins released from the activated microglia 
induced by α-synuclein protein can enhance oxidative 
stress and trigger cell-death pathways.97-99 These locally 
released inflammatory mediators also induce expression of 
cellular adhesion molecules in the endothelium of the BBB 
which help in the subsequent recruitment of  immune cells 
from the periphery into the inflammatory site.100 Several 
studies have shown the infiltration of lymphocytes into the 
CNS in PD.101-104 These immune cells including leukocytes, 
macrophages, B cells and T cells, predominantly, CD4+ T 
cells and CD8+ T cells are recruited in the substantia niagra 
region of the brain in PD with CD4+ T cells being suggested 
to be cytotoxic in PD.102,102 However, the other subsets of 
T cells such as Treg cells are also present in the substantia 
niagra of PD and have the ability to suppress the cytotoxicity 
of effector T cells like Th-17 cells.105,107 These Treg cells can 
also induce apoptosis in activated microglia and reduce 
α-synuclein protein induced neurotoxicity.106,107 Although 
various studies have argued on either the pathogenic or 
the neuroprotective role of lymphocytes, the precise role 
of lymphocytes in PD is still elusive. Hence, it is evident that 
lymphocytes play a key role in PD but, their role in relation 
to PD pathology still needs to be explored extensively.

Stroke

The World Health Organisation (WHO) has defined stroke 
as the clinical syndrome of rapid onset of focal or global 
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cerebral deficit, lasting more than 24 hours or leading 
to death with no apparent cause other than a vascular 
one.108 Various risk factors including smoking, diabetes, 
hypertension, atrial fibrillation and transient ischaemic 
attack have been identified for stroke which can lead to 
either haemorrhagic or ischaemic stroke.109 Haemorrhagic 
stroke is due to hypertensive arteriosclerosis and 
amyloid angiopathy whereas, the major cause of focal or 
ischaemic stroke is due to the occlusion of major arteries 
of the brain and accounts for 80% of all strokes.110,111 The 
occlusion in the artery within the CNS leads to a reduction 
of blood flow leading to insufficient oxygen and glucose 
supply to the brain. Usually, this occlusion develops 
due to thrombosis in situ (such as atherothrombosis of 
large cervical or intracranial arteries), or embolism from 
heart or blockage of small penetrating arteries due to 
arteritis or haematological disorders.112 In stroke, a series 
of neurochemical processes occurs which is termed an 
ischaemic cascade. During ischaemic cascades, various 
events take place including cellular metabolic failure due 
to hypoperfusion, oxidative stress, excitoxicity, damage 
of BBB, microvascular injury, activation of haemostatic 
system and inflammation.113 These series of events result 
in non-selective cell death in the CNS including neurons, 
astrocytes, microglia, oligodendrocytes and endothelial 
cells.114 

Apart from various risk factors including smoking, diabetes 
and hypertension, there are several studies showing a 
relation between inflammatory status and the risk of stroke 
which also has an effect on the outcome of stroke.115-118 
The inflammatory response arises from the series of 
ischaemic cascades. The hypoperfusion occurs during this 
cascade causes a failure of energy-dependent ion pump 
leading to activation of calcium channels and release of 
excitatory neurotransmitters including glutamate into 
extracellular spaces.119-121 The release of excess excitatory 
neurotransmitters causes neuronal death which is termed 
as excitotoxicity.113,122-124 On the other hand, a disturbance 
in the scavenging of free reactive radicals causes oxidative 
stress.113,125,126 There is significant evidence illustrating 
the cytotoxic effects of free reactive oxygen and nitrogen 
species.127-129 This oxidative stress leads to glial cells 
activation followed by release of various inflammatory 
mediators including cytokines, chemokines and reactive 
free radicals, as well as expression of MHC I and II and 
co-stimulatory molecules.118,130,131 The level of IL-1 has 
been reported to be elevated after experimental stroke 
and has been a target for therapy in stroke in reducing 
inflammation-related damage.115,132-134 

Non-specific activation of peripheral T cells has been 
reported in stroke patients compared with healthy 
subjects, and the number of Treg cells is increased 
in stroke patients, similar to that described in animal 
models.135,136 During inflammation, endothelial cells of 
the BBB express various adhesion molecules including 
ICAM-1, ICAM-2 and VCAM-2 and selectins that help 

lymphocytes migration from the periphery to the CNS.137-

140 These lymphocytes express chemokine receptors, α4β1 
integrins and LFA-1 helping them in capturing, activation 
and transendothelial migration across the BBB.22,100 Several 
studies have shown infiltration of lymphocytes into the 
CNS following stroke.141-144 Real time in vivo imaging of 
the mouse brain after experimental stroke revealed a 
massive number of T cells infiltration into the stroke brain 
in comparison to sham.141 This recent study has reported 
two distinct populations of T cells in experimental stroke, 
the fast migrating T cells and slow migrating T cells but, 
the definitive role of these two populations in stroke is still 
under investigation.141 Furthermore, various studies have 
shown the neurotoxic effect in the stroke while at the same 
time others have argued on their neuroprotective role in 
the stroke.145-149 Taken together, to date there has been 
little agreement on the precise role of lymphocytes in the 
stroke and a better understanding of their contribution to 
stroke is still required.

Role of lymphocytes in neurodegenerative diseases: 
pathogenic or neuroprotective?

Infiltration of lymphocytes into the CNS during 
neurodegenerative diseases is well established and the 
molecular mechanisms underlying their recruitment 
into the CNS has also been well documented.13,22,53,56, 

102,104,141,100,150 However, the controversy of scientific evidence 
for the role of lymphocytes during neurodegeneration has 
raged unabated for more than a half century.

It is now evident that after infiltration into the CNS and 
recognition of cognate antigen/MHC, peripherally activated 
lymphocytes (see section 1.3.1) can initiate inflammatory 
response in the CNS which can be either neuroprotective 
or neurotoxic.22,151 The pathogenic role of T cells has been 
demonstrated in neurodegenerative diseases causing 
neuronal death.101,103,152,153 The extent of the CNS injury 
during neurodegeneration has been correlated with the 
increase in T cells infiltration into the CNS suggesting the 
greater the infiltration, the greater the neuronal injury.154 
It has been suggested that these infiltrating T cells can also 
mediate cell death and demyelination in neurodegenerative 
diseases, affecting other effector cells including mircoglia 
and/or macrophages.155 The adoptive transfer of T cells 
from spinal cord injury model mice and EAE-induced mice to 
healthy recipients develops paralytic disease which further 
supports the pathogenic role of T cells.155 It has been shown 
that during neurodegeneration and brain injury, both T cells 
and B cells are activated which is referred to as auto-reactive 
T cells or B cells.156,157 The number of auto-reactive T cells is 
increased in neurodegeneration and CNS trauma and they 
predominantly release IFN-γ and TNF-α.154,156,158 Moreover, 
these cytokines released by these auto-reactive cells can 
exacerbate ischaemia and excitotoxicity in the brain during 
neurodegeneration.159 Studies have also demonstrated 
that TNF-α induces cell death via apoptotic pathways and 
its concentration was also found to be elevated during 
neurodegenerative disease including PD.160,161 In addition, 
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activated CD4+ T cells express Fas-ligand (FasL), which 
has been reported to induce cell death via apoptosis in 
neurodegenerative diseases including EAE.162,163 These 
Fas and FasL are type I and II transmembrane receptors 
belonging to TNF/nerve growth factor and TNF families’ 
protein respectively.164 The infiltrating CD4+ T cells in PD 
induce apoptosis of dopaminergic neurons via FasL-Fas 
interaction, mediating FasL-mediated activation of microglia 
and neurodegeneration.101 The up-regulation of Fas and 
their ligands have been demonstrated in the CNS during 
neurodegenerative disease such as EAE leading to the 
apoptotic cell death.165 In addition, CD8+ T cells or cytotoxic 
T lymphocytes (CTL) are proposed to be involved in direct 
killing of neurons in a MHC-I dependent manner.166,167 The 
induction of MHC-I expression in neurons via IFN-γ has 
been documented and it has also been reported that the 
cytotoxicity of CTL in these neurons is mediated via either 
FasL-mediated neuronal apoptosis or perforin-dependent 
lysis of neurons.167-169 Moreover, both CD4+ T cells and 
CD8+ T cells have been reported to be equally neurotoxic 
and mediated via direct cell contact mechanism involving 
FasL, LFA-1 and CD40.170

Despite the proposed role of T cells in neurodegneration, 
there is growing evidence for a beneficial or neuroprotective 
role of lymphocytes in neurodegenerative diseases.171-175 
Adoptive transfer of auto-reactive T cells from EAE-
induced mice to healthy recipient induces pathology.155 

However, when these cells are transferred to the mice 
with partial optic nerve crush, a model for secondary 
neurodegeneration, they were found to be beneficial.173 

Nerve cells from the mice which received auto-reactive 
T cells were found to survive well and were resistant 
to secondary neurodegeneration. Further analysis also 
revealed that only T cells specific to MBP were able to 
protect retinal ganglion cells from secondary damage and 
not T cells specific for non-self antigens, such as ovalbumin 
and heat-shock proteins. They further have suggested that 
only CNS-specific T cells are activated at the injured site to 
exert the neuroprotective response while T cells specific 
to non-self antigens fail to activate because of inadequate 
antigen recognition.173 In addition, after experimental 
axotomy of facial nerves, facial motor neurons are found to 
be severely impaired in severe combined immunodeficient 
(SCID) mice which lack T cells and B cells.176,177 but are 
restored up to wild-type controls after adoptive transfer 
of wild-type splenocytes containing T and B cells. Similarly, 
intraperitoneally injection of auto-reactive MBP-specific 
T cells in rat with an experimentally crushed spinal cord 
show early recovery with greater locomotor function as 
compared to controls.178,179 Moreover, an in vitro study in 
murine entorhinal-hippocampal brain slices shows down-
regulation of the Th-1 cells induced inflammatory marker, 
ICAM-1 in microglia  while another study demonstrated the 
neuroprotective role of both Th-1 and Th-2 cells.175,180

It is now well understood that upon activation by their cognate 
antigen/MHC-II, CD4+ T cells in the presence of appropriate 

mediators also differentiate into Treg cells and several 
studies have demonstrated the immunosuppressive role of 
Treg during neuroinflammation.105,107,136, 181-185 Treg cells have 
an immunomodulatory role in human immunodeficiency 
virus (HIV)-1-induced neurodegeneration leading to 
neuroprotection by suppressing microglial activation 
and secreting neurotrophic factors.185 Treg cells are able 
to salvage neurons by suppressing the inflammatory 
response mediated by Th-17 cells.105 It has also been 
demonstrated that interaction between neurons and 
pathogenic T cells in EAE-induced mice cause conversion of 
pathogenic T cells into Treg cells which are able to suppress 
neurodegeneration induced by pathogenic T cells.184 The 
conversion of pathogenic T cells into neuroprotective Treg 
cells has been suggested to be induced by the interaction of 
CD4+ T cells and neurons via B7-CD28 and TGF-β receptor 
signalling pathways.184 In addition, IL-10 producing CD4+ T 
cells are found to be neuroprotective in stroke and it has 
been demonstrated that IL-10 and TGF-β can modulate 
immune processes by inhibiting Th-1-induced inflammatory 
responses as well as general inflammation leading to 
neuroprotection.147,186,187 These auto-reactive T cells are 
able to produce various neurotrophic factors including 
brain-derived neurotrophic factors (BDNF), neurotrophin-3 
(NT-3) and glial-cell derived neurotrophic factors which 
can rescue neurons from neurodegeneration.172,188 It has 
also been suggested that T cells can instruct microglia to 
remove neurotoxic extracellular glutamate resulting in 
neuroprotection.189 

Investigating the role of B cells in EAE-induced mice 
reveals that B cell deficient mice are more susceptible to 
EAE induction developing severe pathology with delayed 
recovery and early demyelination in compare to their 
controls.190,191 Likewise, a decrease or absence of B cells in 
EAE-induced mice correlates with an increase in severity of 
disease as well as influx of more pathogenic T cells into the 
CNS.192,193 In addition, IL-10 secreted by B cells is reported 
to be neuroprotective in EAE-induced mice since EAE-
induced mice having IL-10 deficit B cells failed to recover 
and manifested persistent inflammatory responses.194 

Hence, IL-10 specific B cells are suggested to be playing 
a crucial role in the recovery and progression of the 
disease.193 It has also been demonstrated that B cells are 
able to limit the spreading and severity of disease in EAE-
induced mice.195 Furthermore, there is evidence showing 
that B cells are able to release various neurotrophic factors 
including BDNF, NT-3 and neurotrophic growth factor which 
have a possible role in contributing to neuroprotection 
in neurodegenerative diseases.196-198 In addition, recent 
paper has shown the neuroprotective role of lymphocytes 
during neurodegeneration either induced by excitotoxicity 
or glucose-oxygen deprivation which is mediated through 
the astrocytic activation and modulation of mitogen 
activated protein (MAP) kinases.199 IL-6 has been proposed 
to be one of the potential factors in lymphocyte mediated 
neuroprotection.199  
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Thus, it is clear that the notion of the brain as an absolute 
immune-privileged site is no longer appropriate, rather it 
can be considered as a site of active immune-surveillance. 
Recent evidence suggests the existence of bidirectional 
communication between these two systems and can 
influence each other via various mediators in both healthy 
and diseased condition of the CNS. In addition to this bi-
directional communication, several studies have reported 
that lymphocytes are regularly patrolling the normal CNS 
in low number which can be increased upon recognition 
of cognate antigen and initiation of inflammation at the 
site. Whilst many attempts have been made to describe 

either the pathogenic or the neuroprotective role of 
lymphocytes, there has been little discussion about 
precise function(s) and mechanism(s) of these responses 
during neurodegeneration. Therefore, by defining the role 
and underlying mechanism(s) of lymphocytes and other 
related immune cells in neurodegenerative diseases, we 
certainly can set a milestone for the better understanding 
of the disease pathology and its therapy. Moreover, on 
this basis, the possibility of immune-based therapy of 
neurodegenerative diseases cannot be overlooked, though 
proper pros and cons should be determined beforehand.
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